16 research outputs found

    Segmentation of remote sensing images using similarity measure based fusion-MRF model

    Get PDF
    Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details. We propose a multilayer fusion model for adaptive segmentation and change detection of optical remote sensing image series, where trajectory analysis or direct comparison is not applicable. Our method applies unsupervised or partly supervised clustering on a fused-image series by using cross-layer similarity measure, followed by multilayer Markov random field segmentation. The resulted label map is applied for the automatic training of single layers. After the segmentation of each single layer separately, changes are detected between single label maps. The significant benefit of the proposed method has been numerically validated on remotely sensed image series with ground-truth data

    A Comparison of Machine Learning Algorithms and Feature Sets for Automatic Vocal Emotion Recognition in Speech

    Get PDF
    Vocal emotion recognition (VER) in natural speech, often referred to as speech emotion recognition (SER), remains challenging for both humans and computers. Applied fields including clinical diagnosis and intervention, social interaction research or Human Computer Interaction (HCI) increasingly benefit from efficient VER algorithms. Several feature sets were used with machine-learning (ML) algorithms for discrete emotion classification. However, there is no consensus for which low-level-descriptors and classifiers are optimal. Therefore, we aimed to compare the performance of machine-learning algorithms with several different feature sets. Concretely, seven ML algorithms were compared on the Berlin Database of Emotional Speech: Multilayer Perceptron Neural Network (MLP), J48 Decision Tree (DT), Support Vector Machine with Sequential Minimal Optimization (SMO), Random Forest (RF), k-Nearest Neighbor (KNN), Simple Logistic Regression (LOG) and Multinomial Logistic Regression (MLR) with 10-fold cross validation using four openSMILE feature sets (i.e., IS-09, emobase, GeMAPS and eGeMAPS). Results indicated that SMO, MLP and LOG show better performance (reaching to 87.85%, 84.00% and 83.74% accuracies, respectively) compared to RF, DT, MLR and KNN (with minimum 73.46%, 53.08%, 70.65% and 58.69% accuracies, respectively). Overall, the emobase feature set performed best. We discuss the implications of these findings for applications in diagnosis, intervention or HCI

    Analysing the Direction of Emotional Influence in Nonverbal Dyadic Communication: A Facial-Expression Study

    Full text link
    Identifying the direction of emotional influence in a dyadic dialogue is of increasing interest in the psychological sciences with applications in psychotherapy, analysis of political interactions, or interpersonal conflict behavior. Facial expressions are widely described as being automatic and thus hard to overtly influence. As such, they are a perfect measure for a better understanding of unintentional behavior cues about social-emotional cognitive processes. With this view, this study is concerned with the analysis of the direction of emotional influence in dyadic dialogue based on facial expressions only. We exploit computer vision capabilities along with causal inference theory for quantitative verification of hypotheses on the direction of emotional influence, i.e., causal effect relationships, in dyadic dialogues. We address two main issues. First, in a dyadic dialogue, emotional influence occurs over transient time intervals and with intensity and direction that are variant over time. To this end, we propose a relevant interval selection approach that we use prior to causal inference to identify those transient intervals where causal inference should be applied. Second, we propose to use fine-grained facial expressions that are present when strong distinct facial emotions are not visible. To specify the direction of influence, we apply the concept of Granger causality to the time series of facial expressions over selected relevant intervals. We tested our approach on newly, experimentally obtained data. Based on the quantitative verification of hypotheses on the direction of emotional influence, we were able to show that the proposed approach is most promising to reveal the causal effect pattern in various instructed interaction conditions.Comment: arXiv admin note: text overlap with arXiv:1810.1217

    Multilayer Markov Random Field Models for Change Detection in Optical Remote Sensing Images

    Get PDF
    In this paper, we give a comparative study on three Multilayer Markov Random Field (MRF) based solutions proposed for change detection in optical remote sensing images, called Multicue MRF, Conditional Mixed Markov model, and Fusion MRF. Our purposes are twofold. On one hand, we highlight the significance of the focused model family and we set them against various state-of-the-art approaches through a thematic analysis and quantitative tests. We discuss the advantages and drawbacks of class comparison vs. direct approaches, usage of training data, various targeted application fields and different ways of ground truth generation, meantime informing the Reader in which roles the Multilayer MRFs can be efficiently applied. On the other hand we also emphasize the differences between the three focused models at various levels, considering the model structures, feature extraction, layer interpretation, change concept definition, parameter tuning and performance. We provide qualitative and quantitative comparison results using principally a publicly available change detection database which contains aerial image pairs and Ground Truth change masks. We conclude that the discussed models are competitive against alternative state-of-the-art solutions, if one uses them as pre-processing filters in multitemporal optical image analysis. In addition, they cover together a large range of applications, considering the different usage options of the three approaches

    Improved segmentation of a series of remote sensing images by using a fusion MRF model

    No full text
    Classifying segments and detection of changes in terrestrial areas are important remote-sensing tasks. Some country areas are scanned frequently (e.g. year-by-year) to spot relevant changes, and several repositories contain multi-temporal image samples for the same area in very different quality and details. We propose a Multi-Layer Markovian adaptive fusion on LuvLuv color images and similarity measure for the segmentation and detection of changes in a series of remote sensing images. We aim the problem of detecting details in rarely scanned remote sensing areas, where trajectory analysis or direct comparison is not applicable. Our method applies unsupervised or partly supervised clustering based on a cross-image featuring, followed by multilayer MRF segmentation in the mixed dimensionality. On the base of the fused segmentation, the clusters of the single layers are trained by clusters of the mixed results. The improvement of this (partly) unsupervised method has been validated on remotely sensed image series

    An improved local similarity measure estimation for change detection in remote sensing images

    No full text

    Partitioning of Net Ecosystem Exchange Using Dynamic Mode Decomposition and Time Delay Embedding

    No full text
    Ecosystem respiration (Reco) represents a major component of the global carbon cycle. An accurate estimation of Reco dynamics is necessary for a better understanding of ecosystem–climate interactions and the impact of climate extremes on ecosystems. This paper proposes a new data-driven method for the estimation of the nonlinear dynamics of Reco using the method of dynamic mode decomposition with control input (DMDc). The method is validated on the half-hourly Fluxnet 2015 data. The model is first trained on the night-time net ecosystem exchange data. The day-time Reco values are then predicted using the obtained model with future values of a control input such as air temperature and soil water content. To deal with unobserved drivers of Reco other than the user control input, the method uses time-delay embedding of the history of Reco and the control input. Results indicate that, on the one hand, the prediction accuracy of Reco dynamics using DMDc is comparable to state-of-the-art deep learning-based methods, yet it has the advantages of being a simple and almost hyper-parameter-free method with a low computational load. On the other hand, the study of the impact of different control inputs on Reco dynamics showed that for most of the studied Fluxnet sites, air temperature is a better long-term predictor of Reco, while using soil water content as control input produced better short-term prediction accuracy
    corecore